2685: Count-the-Number-of-Complete-Components
Medium
This solution hinges on Breadth-first Search.
Realise that, to verify if a component is connected or not, we can:
Then, we check all the connected nodes; for the node to be a part of a completed connected component:
If the nodes is not a part of a completed connected component, we can simply run DFS until we search the entire component and mark all its nodes as seen.
Code:
class Solution {
public:
bool bfs(int& current, int parent_size, vector<vector<int>> &adjacencyMatrix, vector<int> &seen) {
bool complete = true;
if (adjacencyMatrix[current].size() != parent_size) complete = false;
[current] = 1;
seenfor (int child : adjacencyMatrix[current]) {
if (seen[child] == 1) continue;
= false;
complete (child, parent_size, adjacencyMatrix, seen);
bfs}
if (complete == true) {
return true;
} else {
return false;
}
}
int countCompleteComponents(int n, vector<vector<int>>& edges) {
<int> seen(n, 0);
vector<vector<int>> adjacencyMatrix(n);
vector
for (int i = 0; i < edges.size(); ++i) {
[edges[i][0]].push_back(edges[i][1]);
adjacencyMatrix[edges[i][1]].push_back(edges[i][0]);
adjacencyMatrix}
int ans = 0;
for (int i = 0; i < n; ++i) {
if (seen[i] == 1) continue;
[i] = 1;
seen
bool complete = true;
for (int child : adjacencyMatrix[i]) {
[child] = 1;
seen}
for (int child : adjacencyMatrix[i]) {
if (!bfs(child, (int)adjacencyMatrix[i].size(), adjacencyMatrix, seen)) {
= false;
complete }
}
if (complete == true) {
++ans;
}
}
return ans;
}
};