2425: Bitwise-XOR-of-All-Pairings
Medium
There are 2 key parts in the question:
Using both these properties, if we take the first example where:
nums1 = [2, 1, 3]
nums2 = [10, 2, 5, 0]
We find that a possible nums3
, which contains the
bitwise XOR of all pairings between
nums1
and nums2
, is
[8,0,7,2,11,3,4,1,9,1,6,3]
.
However, when we try return the bitwise
XOR of all integers in nums3
, since we
know that each element in nums3
is just the result of
a XOR operation between an element in nums1
and
nums2
, it means that
8 ^ 0 ^ 7 ^ 2 ^ 11 ^ 3 ^ 4 ^ 1 ^ 9 ^ 1 ^ 6 ^ 3
is
equivalent to
(2 ^ 10) ^ (2 ^ 2) ^ (2 ^ 5) ^ (2 ^ 0) ^ (1 ^ 10) ^ (1 ^ 2) ^ (1 ^ 5) ^ (1 ^ 0) ^ ...
etc.
You may notice immediately that there is a pattern; the number of a times you bitwise XOR an element is equal to the number of elements in the opposite array;
e.g. (*2* ^ 10) ^ (*2* ^ 2) ^ (*2* ^ 5) ^ (*2* ^ 0) ^ (1 ^ 10) ^ (1 ^ 2) ^ ...
etc. you see that you have to bitwise XOR
nums1[0] = 2
4 times as
nums2.size() = 4
.
Since order does not matter, we can rearrange the expression:
Following this, we realise that bitwise XORing an element times is equivalent to bitwise XORing an element times.
Therefore, my algorithm is to check for the
length of both nums1
and nums2
;
Then, there are 3 outcomes:
Code:
class Solution {
public:
int xorAllNums(vector<int>& nums1, vector<int>& nums2) {
int temp1 = 0, temp2 = 0;
if (nums1.size()%2 == 1) {
= nums3[0];
temp2 for (int i = 1; i < nums2.size(); ++i) {
^= nums2[i];
temp2 }
}
if (nums2.size()%2 == 1) {
= nums1[0];
temp1 for (int i = 1; i < nums1.size(); ++i) {
^= nums1[i];
temp1 }
}
int ans = temp1 ^ temp2;
return ans;
}
};