2425: Bitwise-XOR-of-All-Pairings
Medium

There are 2 key parts in the question:

Using both these properties, if we take the first example where:

We find that a possible nums3, which contains the bitwise XOR of all pairings between nums1 and nums2, is [8,0,7,2,11,3,4,1,9,1,6,3].

However, when we try return the bitwise XOR of all integers in nums3, since we know that each element in nums3 is just the result of a XOR operation between an element in nums1 and nums2, it means that 8 ^ 0 ^ 7 ^ 2 ^ 11 ^ 3 ^ 4 ^ 1 ^ 9 ^ 1 ^ 6 ^ 3 is equivalent to (2 ^ 10) ^ (2 ^ 2) ^ (2 ^ 5) ^ (2 ^ 0) ^ (1 ^ 10) ^ (1 ^ 2) ^ (1 ^ 5) ^ (1 ^ 0) ^ ... etc.

You may notice immediately that there is a pattern; the number of a times you bitwise XOR an element is equal to the number of elements in the opposite array;

e.g. (*2* ^ 10) ^ (*2* ^ 2) ^ (*2* ^ 5) ^ (*2* ^ 0) ^ (1 ^ 10) ^ (1 ^ 2) ^ ... etc. you see that you have to bitwise XOR nums1[0] = 2 4 times as nums2.size() = 4.

Since order does not matter, we can rearrange the expression:

Following this, we realise that bitwise XORing an element nn times is equivalent to bitwise XORing an element nmod2n \bmod 2 times.

Therefore, my algorithm is to check for the length of both nums1 and nums2;

Then, there are 3 outcomes:

Code:

class Solution {
public:
    int xorAllNums(vector<int>& nums1, vector<int>& nums2) {
        int temp1 = 0, temp2 = 0;
        if (nums1.size()%2 == 1) {
            temp2 = nums3[0];
            for (int i = 1; i < nums2.size(); ++i) {
                temp2 ^= nums2[i];
            }
        }
        if (nums2.size()%2 == 1) {
            temp1 = nums1[0];
            for (int i = 1; i < nums1.size(); ++i) {
                temp1 ^= nums1[i];
            }
        }
        int ans = temp1 ^ temp2;
        return ans;
    }
};

Complexity: